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Abstract

Count responses with grouping and right censoring have long been used in surveys to study

a variety of behaviors, status and attitudes. Yet, grouping or right-censoring decisions of count

responses still rely on arbitrary choices made by researchers. We develop a new method for

evaluating grouping and right-censoring decisions of count responses from a (semi-supervised)

machine-learning perspective. This paper uses Poisson-multinomial mixture models to con-

ceptualize the data generating process of count responses with grouping and right censoring,

and demonstrates the link between grouping-scheme choices and asymptotic distributions of

the Poisson mixture. To search for the optimal grouping scheme maximizing objective func-

tions of the Fisher information (matrix), an innovative three-step M algorithm is then proposed

to process infinitely many grouping schemes based on Bayesian A-, D- and E-optimality. A

new R package is developed to implement this algorithm and evaluate grouping schemes of

count responses. Results show that an optimal grouping scheme not only leads to a more

efficient sampling design but also outperforms a nonoptimal one even if the latter has more

groups.

Keywords: survey methodology, optimality, experimental design, search algorithm, machine learn-

ing, Fisher information, zero inflation, right censoring, Poisson distribution

1 Introduction

The design of count responses in surveys is a common yet understudied topic in social sciences.

Although the collection of exact counts of frequencies or incidence in social, epidemiological and

demographic surveys (e.g., number of births, frequencies of delinquent behaviors, incidents of

diseases and counts of social contacts) is analytically appealing, actual count responses in survey
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questions often consist of grouped counts (e.g., one response category “3–4 times” instead of two

separate “3 times” and “4 times” categories) or are right-censored (e.g., the upper end response

category as “6 or more times”). In fact, such grouped and right-censoring (GRC) count responses

have long been adopted by social scientists to study a range of behaviors, events and attitudes

(Akers et al. 1989; Bachman et al. 1990; Bailey et al. 1992; Barnes et al. 2006; Basu and Famoye

2004; Fu et al. 2013, 2016; Hagan et al. 2005; Marsden 2003; Reardon and Raudenbush 2006;

Schaeffer and Dykema 2011; Straus et al. 1990; Thoits and Hewitt 2001). Scholars often find that

GRC responses are useful to study sensitive research topics (e.g., juvenile delinquency, domestic

violence and drug use) or to solicit information from respondents with less cognitive capacity (e.g.,

young adolescents or the oldest old). For example, one nationally representative survey project in

the United States, the Monitoring the Future study (MTF or the National High School Senior

Survey), has used GRC responses to track annual trends of delinquency and substance use among

U.S. high school seniors since the 1975. Such GRC count responses have also been used by the

National Longitudinal Study of Adolescent Health (Add Health) to study adolescent behaviors at

home, school or neighborhood.

As documented in existing literature (Bradburn et al. 2004; Schwarz et al. 1985), the design of

GRC count responses has a direct impact on the estimation of behavioral or cognitive frequencies.

For example, an experimental study shows that the choice of right-censored count categories in-

fluences the estimation of TV-watching time Schwarz et al. (1985). Yet, the design of GRC count

responses is still arbitrarily determined by survey investigators. This practice is surprising given

the abundant presence of count responses with either right censoring or grouping or both in sur-

veys. Under certain scenarios, determining the optimal grouping scheme of GRC responses has

been implemented by sophisticated statistical procedures and context-specific research designs, de-
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pending on the other variables of interest. For example, the intrinsic or contingent ordering of log-

multiplicative association models may provide the optimal grouping scheme if conditional or joint

distributions of variables in contingency tables are provided (Goodman 1987; Wong 2010; Smith

and Garnier 1986). Likewise, given the extensive debates over the conceptualizations of gradations

of democracy (Bollen 1990; Cheibub et al. 1996), it is found that the validity of dichotomous and

graded measures of democracy can be evaluated by projecting their qualitative difference into two

essential indicators related to democracy, international conflict and regime stability (Elkins 2000).

Although these innovative studies provide useful tools for scholars to assess grouping decisions

for counts that are intrinsic to specific research questions at stake, their statistical procedures or

research designs require additional information on the distribution of the ungrouped outcome vari-

able and its association with other variables. Nevertheless, the use of GRC count responses often

means that investigators have yet to understand the distribution of counts that are extrinsic to a

specific research question, let alone its association with other variables. A search algorithm for

the optimal grouping scheme focusing exclusively on the outcome variable per se rather than its

research context is therefore useful and readily facilitates the evaluation of alternative grouping

schemes with different a priori assumptions.

Applying the theory of optimal experimental designs (Atkinson et al. 2007; De Leon and

Atkinson 1991; Dette et al. 2004; Minkin 1987), we propose an innovative three-step algorithm

for searching the parameter space and generating optimal grouping decisions for GRC count re-

sponses. In the machine-learning literature, optimal experimental design is also referred as a

special case of semi-supervised machine learning (or active learning) because a learning/search

algorithm interacts with users (survey investigators for the current research) to obtain optimal out-

puts from the parameter space (Settles 2010; Cohn et al. 1996). Based on a Poisson-multinomial
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mixture distribution, this paper begins with configuring the data generating process of GRC count

responses and develops related maximum likelihood estimators (MLE). Two members of the Pois-

son family of frequency distributions, the Poisson and Zero-Inflated Poisson (ZIP), are studied

in detail. Combined with prior Poisson distribution parameters, the Fisher Information (matrix)

of the maximum likelihood estimator is then employed to implement a new M search algorithm

using Bayesian A-, D- and E-optimality. An R package GRCdata currently consisting of two

functions find.scheme and grcmle has been written to assess the grouping decisions of count

responses.

2 Grouped and Right-Censored Count Data

Before discussing optimal designs for GRC count data, the question arises as to why such response

categories have been adopted by social scientists. As examples, in various surveys respondents are

asked to list their numbers of close friends, weekly frequencies of alcohol intake, incidents of

criminal victimization in the recent six months, times of illness in the last year and life-time his-

tory of residential moves. Admittedly, a precise enumeration of exact counts is methodologically

appealing for two reasons. First, exact counts can be readily analyzed by existing statistical tools

(e.g., Poisson regression models) and software packages. Second, survey investigators do not have

to deal with arbitrary grouping or right-censoring decisions. Yet, one major problem encountered

by survey investigators is that the precise enumeration of counts can impose a cognitive burden on

interviewees and sometimes leads to excessive missing data. In other words, the GRC data struc-

ture is a compromise between what survey investigators want and what respondents are willing

or able to offer (Groves et al. 2011; Schaeffer and Presser 2003). For example, although medical

sociologists and psychiatrists would like to know exactly how many days in the past week respon-
5



dents experienced a variety of depressive symptoms, respondents, especially these with depressive

symptoms, often get frustrated when required to distinguish between, for example, 2 days and 3

days. Thus, the CES-D scale, an established self-report depression measure, offers four grouped

response categories: less than 1 day, 1-2 days, 3-4 days and 5-7 days (Radloff 1977). For a study on

elder adults aged 65 and above, a pre-test showed that respondents were unwilling to answer even

the four grouped response categories of the CES-D scale so researchers had to further collapse the

four grouped categories and used a dichotomous measure instead (Blazer et al. 1991).

Likewise, for research topics that are perceived as sensitive or less socially desirable, such as

personal income, number of sex partners, incidents of delinquent behaviors and history of drug

use, respondents feel more comfortable in reporting grouped or right-censored categories instead

of exact numbers (Sudman et al. 1996). It is not surprising that most, if not all, questions related

to the frequency of juvenile delinquency and drug use in both the Monitoring the Future (MTF)

study and The National Longitudinal Study of Adolescent to Adult Health (Add Health) adopted

GRC responses.

Even if respondents are willing to collaborate, the difficulty in recalling the exact number

of events that happened some time (e.g., several months) ago makes the exact number of events

unreliable and introduces additional measurement errors (Groves et al. 2011; Schaeffer and Presser

2003). Similarly, if listing the total number of events requires extra efforts during field interview,

fatigue of interviewers can result in underreported numbers of events. For example, as interviewers

were instructed to probe for more discussion partners, it has been shown that interviewer effects

(e.g., the failure to elicit more private network data) contributed to the extensive debates concerning

increasing social isolation in the United States (Paik and Sanchagrin 2013).
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3 Generating GRC Count Data

In order to define the optimality for objective functions of GRC grouping schemes, we first con-

figure a data generating process for GRC count responses. The Poisson distribution is often used

to model count data with probability mass:

f(y|λ) = e−yλ
y

y!
, y = 0, 1, 2, . . . , (1)

where y is a random count variable and λ is both the mean and the variance of the Poisson dis-

tribution. To define a Poisson-based likelihood function for GRC count data, we propose a data-

generating scheme in the form of a Poisson-multinomial process. Similar Poisson-multinomial

models were previously used to study contingency tables and traffic accidents (Lang 2004; Lord

et al. 2005).

We let G = {Ij}Nj=1 denote a GRC grouping scheme with N groups (i.e., the total number of

response categories) and consecutive subsets I1, . . . , IN of nonnegative integers {0, 1, 2, . . . .}. For

identically and independently distributed (iid) observations xi’s from a Poisson(λ) distribution, we

have,

αj(xi) =


1, when xi ∈ Ij,

0, otherwise.
(2)

In other words, we have a N -dimensional random vector (α1, . . . , αN) denoting the GRC re-

sponses. For example, (α{0}, α{1}, α{2}, α{3-5}, α{6-9}, α{10+}) denotes the GRC response cate-

gories never, once, twice, 3-5 times, 6-9 times, 10 and more times. Note that for any given obser-

vation in a survey sample, there is one and only one component αj for (α1, . . . , αN) that equals

1. This N -dimensional vector then has a multinomial distribution M(1, θ1, . . . , θN), where the
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parameters θj depend on the parameter λ of the underlying Poisson(λ) distribution:

θj(λ) =
∑
y∈Ij

e−λλ
y

y!
, j = 1, . . . , N. (3)

For example, the multinomial distribution corresponding to (α{0}, α{1}, α{2}, α{3-5}, α{6-9}, α{10+})

is

M

(
1, e−λ, e−λλ, e−λλ

2

2
,

5∑
y=3

e−λλ
y

y!
,

9∑
y=6

e−λλ
y

y!
,

∞∑
y=10

e−λλ
y

y!

)
.

The probability mass function of α(X) = (α(X1), . . . , α(XN)) is also given:

f(α|λ) = θα1
1 θα2

2 · · · θαN
N .

If there are n independent observations {xi}ni=1 drawn from the Poisson(λ) distribution, the

likelihood function is defined using the probability mass function of the Poisson-multinomial dis-

tribution:

L(λ) =
n∏

i=1

f(α(xi)|λ). (4)

Because this likelihood function derives from a Poisson-multinomial distribution, it is easy to show

that the corresponding maximum-likelihood estimator is consistent and asymptotically normal.

More importantly, the variance of its asymptotic distribution is given by the inverse of the Fisher

information1. In other words, any consistent sequence λ̂n of roots of the likelihood in Equation

(4) satisfies
√
n(λ̂n − λ0) → N (0, 1/I(λ0)) in distribution, where I(λ0) is the Fisher information

corresponding to a specific grouping scheme, and λ0 is the underlying true parameter.

The Poisson distribution assumes that its mean λ equals variance. However, this assumption

is violated if empirical frequency distributions show excess zeros relative to a Poisson distribution

1The proof follows Theorems 6.3.7 and 6.3.10 at (Lehmann and Casella 1998), and is available upon request.
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(Hall 2000; Klein et al. 2015; Lambert 1992; Puig and Valero 2006). The Zero-inflated Poisson

(ZIP) distribution takes excess zeros into account and has the probability mass function:

f(y|λ, p) =


1− p+ pe−λ, when y = 0,

pe−λ λy

y!
, when y > 0,

(5)

where p is the proportion of population exposed to the Poisson(λ) distribution.

Using the same distribution of αj in (2), the grouped and right-censored data αj(Xi) defined in

the last section now has a different multinomial distribution M(1, µ1, . . . , µN), where

µ1(λ, p) = 1− p+ p
∑
y∈I1

e−yλ
y

y!
, and µi(λ, p) = p

∑
y∈Ii

e−λλ
y

y!
, for i = 2, . . . , N.

The probability mass function of α then depends on two parameters p and λ of the zero-inflated

Poisson distribution, f(α|λ, p) = µα1
1 · · ·µαN

N . For independent observations {xi}ni=1, we have the

likelihood function

L(λ, p) =
n∏

i=1

f(α(xi)|λ, p). (6)

Again, based on Theorem 6.5.1 at Lehmann and Casella (1998), it is easy to show that the

maximum-likelihood estimators remain consistent and asymptotically normal for the ZIP case.

The detailed proof of their asymptotic properties is given in Fu et al. (Forthcoming). Estimators

λ̂n and p̂n are asymptotically efficient in the sense that in distribution,

√
n(λ̂n − λ0) → N (0, J22/|J |),

√
n(p̂n − p0) → N (0, J11/|J |),

where J11 and J22 are the 1-1 and 2-2 entry of the Fisher information matrix J corresponding to

a specific grouping scheme, and λ0 and p0 are the underlying true parameters. We will further

illustrate and discuss the Fisher information matrix J in the following sections.
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4 Optimal Designs for Grouped and Right Censored Count Data

The foregoing demonstration that the asymptotic distributions of the maximum-likelihood estima-

tors of both the Poisson and the ZIP cases are characterized by the Fisher information (matrix)

is important for defining Bayesian optimality of GRC grouping schemes, given the internal link

between Fisher information (matrix) and grouping choices. For example, the Fisher information of

the Poisson case depends on both the true unknown parameter λ0 and the specific grouping scheme

G: if we know the true parameter λ0, the corresponding asymptotic distribution of the estimator λ̂n

is entirely determined by grouping choices in the sense that a better grouping scheme is associated

with a smaller variance of the asymptotic distribution, or a more efficient estimator. Although the

search for an optimal grouping scheme is easier if the true parameter λ0 is known or given, one

task of optimal experimental designs is to take uncertainty of unknown parameters into account by

incorporating prior knowledge (from experts, prior research or pilot studies) into a general search

algorithm. Next, we further investigate the relations between the Fisher information (matrix) and

grouping choices. An objective function is then proposed to synthesize these relations and facilitate

our subsequent discussion of a general three-step search algorithm.

4.1 Fisher Information and Grouping Choices: the Poisson Case

For the Poisson case, the Fisher information of the previous Poisson-multinomial distribution with

parameter λ and the grouping scheme G = {Ij}Nj=1 is

I(λ) = IG(λ) = −E
[
d2

dλ2
log f(α|λ)

]
= −

N∑
j=1

θj(λ)
d2

dλ2
log θj(λ) =

N∑
i=1

(θ′j)
2

θj
. (7)
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Equation (7) follows the definition of probability mass function θj in (3) and
∑N

j=1 θj = 1. We

next remark on the relationship between the Fisher information and grouping choices.

Remark 4.1 When N = 1, we have θ1 ≡ 1 and thus I = 0. This corresponds to a trivial case

where data provides no information for optimal designs. When N ≥ 2, it is easy to see I > 0 and

the search for an optimal grouping scheme becomes possible.

Remark 4.2 While in empirical applications we restrict N to be finite, we can also let N =

∞ and make each group contain only one integer. This scenario is exactly the same as precise

enumeration without any grouped counts. Under this circumstance, Equation (7) shows that the

Fisher information I is 1/λ, which corresponds to the asymptotic variance of the Poisson estimator.

Remark 4.3 If we obtain a finer grouping scheme G ′ by dividing one or more groups of G into

subgroups, such a grouping scheme yields a larger Fisher information. To show this, let θ =

θ(λ) =
∑c

k=a+1 e
−λλk/k! be the probability corresponding to a particular group {a + 1, . . . , c}

with a ≥ −1 and a + 1 < c. For a grouping scheme G, we see from (7) that this particular group

contributes (θ′)2/θ to the overall Fisher information. Now we divide this group into two subgroups

{a+1, . . . , b} and {b+1, . . . , c} with a+1 ≤ b and b+1 ≤ c. For the new finer grouping scheme,

the contribution of these two subgroups to the Fisher information is

(θ′∗)
2

θ∗
+

(θ′∗∗)
2

θ∗∗
,

where θ∗ =
∑b

k=a+1 e
−λλk/k! and θ∗∗ =

∑c
k=b+1 e

−λλk/k!. Here we note that θ = θ∗ + θ∗∗ and

U2v(u+v)+V 2u(u+v) ≥ uv(U+V )2 for u, v, U, V > 0. Substituting U = θ′∗, u = θ∗, V = θ′∗∗,

and v = θ∗∗, we have

(θ′∗)
2

θ∗
+

(θ′∗∗)
2

θ∗∗
≥ (θ′)2

θ
. (8)

11



In Inequality (8), we note that the equality holds if and only if θ′∗θ∗∗ = θ′∗∗θ∗ (i.e., Uv = uV ).

Next we further demonstrate that θ′∗θ∗∗ ̸= θ′∗∗θ∗ and the equality in (8) does not hold. If −1 < a <

b < c < ∞, we have

e2λ(θ′∗∗θ∗ − θ′∗θ∗∗) =
c∑

k=a+1

λbλk

b!k!
−

c∑
k=b+1

λaλk

a!k!
−

b∑
k=a+1

λcλk

c!k!

=
c−b∑
k=1

(
1

b!(a+ k)!
− 1

a!(b+ k)!

)
λa+b+k +

b−a−1∑
k=1

(
1

b!(c− k)!
− 1

c!(b− k)!

)
λc+b−k.

Likewise, for special cases where a = −1 or c = ∞ we also have

e2λ(θ′∗∗θ∗ − θ′∗θ∗∗) =



∑c
k=0

λbλk

b!k!
−
∑b

k=0
λcλk

c!k!
, if − 1 = a < b < c < ∞,∑∞

k=a+1
λbλk

b!k!
−
∑∞

k=b+1
λaλk

a!k!
, if − 1 < a < b < c = ∞,∑∞

k=0
λbλk

b!k!
, if − 1 = a < b < c = ∞.

Given that a < b < c, the coefficients of the polynomial e2λ(θ′∗θ∗∗ − θ′∗∗θ∗) across all cases

discussed above (i.e., −1 < a < b < c < ∞, a = −1 or c = ∞) must be positive. Since λ is also

positive, θ′∗θ∗∗ − θ′∗∗θ∗ cannot be zero and we have

(θ′∗)
2

θ∗
+

(θ′∗∗)
2

θ∗∗
>

(θ′)2

θ
.

We previously noted that the Fisher information of the Poisson case depends on both the spe-

cific grouping scheme G and the true (unknown) parameter λ. Given the foregoing three remarks

on the relationship between grouping choices and Fisher information, a probability function ρ can

be defined to take prior knowledge of λ into account. In general, we define an objective function

as

ΩP(G) =
∫ ∞

0

IG(λ)dρ(λ),

where ρ is a continuous or discrete distribution. The introduction of ρ allows analysts to deal with

the uncertainty in estimating the true parameter λ and explore optimal grouping schemes under

12



different prior distributions. For example, if a survey investigator assumes that the true value of

λ is known, ρ becomes a degenerate distribution with a point mass of 1 at λ0 ∈ (0,∞). For the

continuous distribution case, we could specify a uniform distribution on [a, b] for ρ and obtain

ΩP(G) =
1

b− a

∫ b

a

IG(λ)dλ.

ρ can also be specified as a discrete distribution supported on positive numbers λ1, . . . , λn with

probability masses q1, . . . , qn, respectively, and we have

ΩP(G) =
n∑

j=1

IG(λj)qj,
n∑

j=1

qj = 1.

4.2 Fisher Information and Grouping Choices: The Zero-Inflated Poisson

Case

Given that the ZIP distribution has two parameters p and λ, its corresponding Fisher information

is denoted by a symmetric and positive semi-definite matrix:

J(λ, p) = JG(λ, p) =

 J11 J12

J21 J22

 =
∑
j

1

µj


(

∂µj

∂λ

)2
∂µj

∂λ

∂µj

∂p

∂µj

∂λ

∂µj

∂p

(
∂µj

∂p

)2
 ,

where µ1 = 1 − p + pθ1, µj = pθj for j ≥ 2, and θj =
∑

y∈Ij e
−λλy/y! for j = 1, . . . , N . This

matrix could also be expressed in the form of Equation (7) as

J =


p(p−1)(θ′1)

2

θ1µ1
+ pI(λ) − θ′1

µ1

− θ′1
µ1

1−θ1
pµ1

 , (9)

where I(λ) =
∑N

j=1 (θ
′
j)

2/θj . Next, we remark on the relationship between Fisher information

and grouping choices for the ZIP case.
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Remark 4.4 Optimal designs become impossible in the trivial case when N = 1. This sce-

nario is similar to Remark 4.1 as the Fisher information matrix J becomes a zero matrix. An-

other trivial case appears when N = 2 and the determinant of J is zero (note that J11(λ, p) =

p(θ′1)
2/(µ1(1− θ1))). Since the asymptotic distribution of

√
n(λ̂n−λ0, p̂n−p0) is now a degenerate

distribution, optimal designs based on prior knowledge of both λ and p become impossible. When

N ≥ 3, Remark 4.3 implies that I(λ) > (θ′1)
2/θ1 + ((1− θ1)

′)2/(1− θ1) and the determinant of

J is calculated as:

det(J) =
1− θ1
µ1

I(λ) +
(p− 1)(θ′1)

2(1− θ1)

θ1µ2
1

− (θ′1)
2

µ2
1

=
1− θ1
µ1

I(λ)− (θ′1)
2

θ1µ1

=
1

µ1

(
(1− θ1)I(λ)−

(θ′1)
2

θ1

)
> 0.

The Fisher information matrix J is therefore strictly positive definite when N ≥ 3 and thus can be

used for optimal designs.

For both the Poisson and the ZIP cases, we have demonstrated that asymptotic variances are

given by the inverse of Fisher information (matrix). Given that in experimental designs an optimal

design is often selected to yield the most efficient estimator (see e.g., Steinberg and Hunter 1984),

an optimal grouping scheme of GRC data should, according to the same principle, maximize Fisher

information (matrices) and produce more (asymptotically) efficient estimators. Because there are

multiple ways of ordering square matrices, we introduce a local objective function S to compare

Fisher information matrices: optimising S will give a locally optimal design (Chernoff 1953),

where local means that the design is optimal for a specific value of an unknown parameter (or

vector). To illustrate the definition of S, we follow previous research on the Loewner partial order

(see e.g., Horn and Johnson 2013) and write J∗ ⪰ J if J∗ − J is positively semi-definite, where

J∗ and J are both strictly positive definite matrices.
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Definition 4.5 (Objective function) We define a local objective function of positive definite ma-

trices (e.g., the Fisher information matrices) as any function S satisfying S(J∗) ≥ S(J) if J∗ ⪰ J .

To maximize the Fisher information matrix and achieve more efficient estimation, we apply lo-

cal objective functions based on three common optimality criteria (Horn and Johnson 2013; Stein-

berg and Hunter 1984): A-optimality: maximizing SA = 1/tr(J−1), where tr(J−1) is the trace

of J−1; D-optimality: maximizing SD = det(J); and E-optimality: maximizing SE, where SE is

the minimum eigenvalue of J . If we assume that the two eigenvalues of J are e1 and e2, the A-

optimality, D-optimality and E-optimality designs maximize e1e2/(e1 + e2), e1e2 and min(e1, e2),

respectively (Nguyen and Miller 1992). Note that SA, SD, and SE satisfy the definition of local

objective functions above (see e.g., Horn and Johnson 2013, page 495). Among the three opti-

mality criteria, A-optimality minimizes average asymptotic variances of all parameter estimates;

D-optimality minimizes the generalized asymptotic variance (or the volume of the confidence el-

lipsoid under normality) of parameter estimates; and E-optimality minimizes the maximum asymp-

totic variance of the estimates of (components of) parameters. Because all three optimality criteria

as information functions are isotonic with respect to the Loewner ordering (Pukelsheim 1993), re-

sults from simulations (not shown) suggest that optimal grouping schemes generated by the three

methods are virtually the same. Nevertheless, we recommend the use of D-optimality due to its

calculation simplicity. A- and E-optimality may lead to more accurate results if there is a strong

correlation between p and λ (Steinberg and Hunter 1984).

Remark 4.6 For the Poisson case, Remark 4.3 shows that a finer grouping scheme gives a larger

Fisher information. This conclusion does not always hold for the ZIP case. For example, the local

objective function S2(J) := J22 = 1−θ1
pµ1

depends entirely on how the first group of a grouping
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scheme is defined. S2 remains unchanged if one divides a group other than the first group into

more subgroups. Yet, the conclusion S(JG∗) ≥ S(JG) still holds for the ZIP case if a grouping

scheme G∗ is finer than G.

This conclusion that S(JG∗) ≥ S(JG) becomes obvious once the difference ∆J = JG∗ −JG is

shown to be positive semi-definite. To investigate whether ∆J is positive semi-definite, we assume

without loss of generality that G∗ is obtained by dividing one group from G into two and denote

∆J =

 ∆J11 ∆J12

∆J21 ∆J22

 .

Because both JG∗ and JG are symmetric matrices, we have ∆J12 = ∆J21. If G∗ is obtained by

dividing the jth (j ≥ 2) group of G into two subgroups, we have ∆J12 = ∆J21 = ∆J22 = 0.

This conclusion follows Equation (9) because the choice of the first group, which remains the same

for both G∗ and G, determines ∆J12, ∆J21 and ∆J22. Remark 4.3 also indicates that ∆J11 > 0.

Therefore ∆J has two nonnegative eigenvalues, 0 and ∆J11, and is positive semi-definite.

If G∗ is obtained by dividing the first group of G into two subgroups, we have θj =
∑

y∈Ij e
−yλy/y!

with I1, · · · , IN denoting different groups of G∗. Therefore I1 ∪ I2 is the first group of G, I3 is the

second group of G, and so on. Following the definition of the Poisson-multinomial distribution, we

still have µ1 = 1− p+ pθ1 and µj = pθj for j ≥ 2. ∆J is then calculated as follows.

∆J11 =
(pθ′1)

2

µ1

+
(pθ′2)

2

µ2

− (pθ′1 + pθ′2)
2

µ1 + µ2

≥ 0,

∆J12 = ∆J21 = − θ′1
µ1

+
θ′1 + θ′2
µ1 + µ2

,

∆J22 =
1− θ1
pµ1

− 1− θ1 − θ2
p(µ1 + µ2)

=
θ2

pµ1(µ1 + µ2)
> 0.

Since tr(∆J) = ∆J11 +∆J22 > 0, the sum of the two eigenvalues of ∆J is positive. Meanwhile,

∆J has no negative eigenvalues because det(∆J) = 0 (proof omitted). Hence we conclude that
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∆J is positive semi-definite and S(JG∗) ≥ S(JG), if a grouping scheme G∗ is finer than G.

We use a distribution ρ(λ, p) to model prior knowledge of the parameters λ and p. Let S be a

local objective function. We define another global objective function as

ΩZIP(G) = ΩZIP,S(G) =
∫
R+×(0,1)

S(JG(λ, p))dρ(λ, p).

Here, we choose to optimize the integral of S(J) because this method has been justified by

Chaloner and Verdinelli (1995) and is shown to be a preferred option for defining Bayesian D-

optimality (Atkinson et al. 2007). For example, if ρ(λ, p) is a uniform distribution on (a, b)× (c, d)

we have

ΩZIP(G) =
1

(b− a)(d− c)

∫ b

a

dλ

∫ d

c

S (JG(λ, p)) dp.

When ρ(λ, p) is a discrete distribution supported on {(λj, pj)}nj=1 with probabilities q1, . . . , qn,

respectively, we have

ΩZIP(G) =
n∑

j=1

S (JG(λj, pj)) qj,
n∑

j=1

qj = 1.

5 A Three-Step M Algorithm

Considering a global objective function Ω(·) which is either ΩP or ΩZIP in the preceding section, we

propose a three-step M search algorithm for selecting an optimal grouping scheme that maximizes

Ω. It should be noted that the application of this algorithm is not restricted to GRC data but could

be extended to optimal designs for count responses in general if either grouping or censoring is

present. From the perspective of semi-supervised machine learning, this M algorithm searches

all possible combinations of grouping schemes and interacts with survey investigators to yield the

optimal grouping scheme.
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Remarks 4.3 and 4.6 show that a finer grouping scheme increases the value of Ω. Without

grouping or right censoring, Ω is thus maximized by the finest scheme where each separate re-

sponse group contains and only contains one integer. This finest possible grouping scheme is

obviously the optimal one. In the presence of grouping and right censoring, however, the search

for an optimal grouping scheme is constrained by the total number of groups N allowed. Now

the search becomes challenging, if not impossible, since the search algorithm has to deal with in-

finitely many grouping schemes. To make sure that the infinitely many grouping schemes for the

GRC responses can be processed by our search algorithm, we introduce a hypothetical integer M ,

which is sufficiently large, to divide the infinitely many grouping schemes into two parts: a finite

set where M is contained in the last groups of schemes and an infinite set where M is not contained

in the last groups. With the introduction of M , the search algorithm consists of three major steps.

First, we use M to produce a finite set of possible grouping schemes. An optimal grouping scheme

maximizing Ω(·) is identified after a search of this finite set. The second and third steps verify

whether the optimal grouping scheme returned by the first step is the global maximizer, i.e., the

scheme achieving the best performance among all N -group schemes. The search algorithm stops

if the optimal grouping scheme returned by the first step passes the verification. Otherwise, the

iteration continues with a larger M .

Step 1: Select a sufficiently large positive integer M . Among all N -group grouping schemes

where M is contained in their last groups, find the scheme Gmax that maximizes Ω.

The introduction of M divides the whole set of infinite grouping schemes into two parts: a

finite set with M contained in the last group and an infinite set with M not contained in the last

group. This procedure is motivated by the idea that, if M is sufficiently large, all integers larger

than M from a Poisson process cannot exert much influence on the Fisher Information and thus do
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not affect the choice of optimal grouping schemes. To illustrate this idea, we define the last right-

censored group IN of a N -group scheme G = {Ii}Ni=1 as IN = {M,M + 1, . . .}. For a Poisson(λ)

model we see that the contribution of this particular group containing M and larger integers to the

Fisher information is trivial: (
e−λ λM−1

(M−1)!

)2
∑∞

k=M e−λ λk

k!

→ 0, as M → ∞.

Moreover, an implication of this property is that, to increase the Fisher information, finer grouping

decisions should be applied to integers with nontrivial probabilities. If the total number of groups

N is fixed, a finer grouping of large integers with trivial probabilities should be avoided and a

coarse right-censored group is preferred.

The choice of M follows a Goldilocks rule. An important assumption of the search algorithm

is that M should be sufficiently large and represents the lower bound of a set of integers leading

to a successful search for the global optimal scheme. Yet, researchers should not choose a too

large M either: the number of all possible grouping schemes processed by the search algorithm

grows quickly with larger M , and the search takes much longer time despite optimization of the

algorithm (the computation time is roughly proportional to MN−1). In theory M should be the

lowest integer included in the last right-censored group of the global optimal scheme so that the

search algorithm works without consuming too much time. As a practical guidance, researchers

may start from an integer larger than the mean of the prior distribution of λ, gradually increase M

if its previous value fails the verification from Step 2 and 3, and locate a sufficiently large M in a

trial-and-error learning process.

One example of the search algorithm is demonstrated in Figure 1. If we set N = 3 and M = 4,

Step 1 only searches six schemes as plotted in the part A of Figure 1. When M is not contained in

19



the last group, there are infinitely many grouping schemes to search and their overall set is denoted

as F1. Examples of F1 are plotted in the part B of Figure 1.

Step 2: Compute the objective function Ω∗ of F3 (defined below), where Ω∗ = maxG∈F3 Ω(G).

The foregoing discussion in Step 1 shows that our algorithm divides the set of all possible

grouping schemes into two parts and Step 1 deals with the finite set with M contained in the last

group. Step 2 then deals with the other infinite set F1 with M not contained in the last group. In

Step 2 the algorithm will search a finite set F3 of grouping schemes and calculate the objective

function based on an optimal scheme from F3. To understand the second step, we first illustrate

what F2 and F3 are and then discuss the relation between F1 and F3. First, let F2 be the overall

set of (N − 1)-group schemes such that M is contained in the last group. When N = 3 and

M = 4, F2 only consists of 4 schemes and is illustrated in the part C in Figure 1. Second, for each

grouping scheme G in F2, we divide its tail after M to make a new scheme G ′. Now the first N −2

groups in G ′ are exactly the same as these in the corresponding G, but each integer greater than M

is now contained and only contained in a separate group in G ′. We denote F3 as the total set of all

grouping schemes G ′ obtained in this way from F2. The case with N = 3 and M = 4 is shown

in parts C (for F2) and D (for F3) in Figure 1. Due to the one-to-one match between grouping

schemes from F2 and F3, they have the same number of schemes.

For any N -group scheme G from F1 where M is not contained in the last group, F3 contains at

least one scheme G ′ finer than G. More specifically, if M is contained in the (N − 1)th group for a

grouping scheme G, there exists some G ′ in F3 that has identical first N − 2 groups as G. G ′ must

be finer than G given that every integer beyond M is also contained in a separate group in G ′. The

case where M is contained in the kth group with k ≤ N − 2 can be deduced by analogy, as now

the first N − 2 groups of G ′ are finer than the first k − 1 groups of G.
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Figure 1: An illustration of the search algorithm.

A

M

0 1 2 3 4 5 6 · · · ∞

0 1 2 3 4 5 6 · · · ∞

0 1 2 3 4 5 6 · · · ∞

0 1 2 3 4 5 6 · · · ∞

0 1 2 3 4 5 6 · · · ∞

0 1 2 3 4 5 6 · · · ∞

B

M

0 1 2 3 4 5 6 · · · ∞

0 1 2 3 4 5 6 · · · ∞

0 1 2 3 4 5 6 · · · ∞

0 1 2 3 4 5 6 · · · ∞

0 1 2 3 4 5 6 · · · ∞

0 1 2 3 4 5 6 · · · ∞

C

M

0 1 2 3 4 5 6 · · · ∞

0 1 2 3 4 5 6 · · · ∞

0 1 2 3 4 5 6 · · · ∞

0 1 2 3 4 5 6 · · · ∞

D

M

0 1 2 3 4 5 6 · · · ∞

0 1 2 3 4 5 6 · · · ∞

0 1 2 3 4 5 6 · · · ∞

0 1 2 3 4 5 6 · · · ∞

Part A: all possible 3-group schemes with M = 4, where M is contained in their last groups; Part B: examples of

infinitely many 3-group schemes from the set F1, where M is not contained in their last groups; Part C: the set F2 of

2-group schemes obtained from a merging process of schemes in Part B. M is still contained in their last groups; Part

D: the set F3 obtained from F2 by including each integer greater than M in one and only in one group.

Step 3: If Ω∗ ≤ Ω(Gmax), Gmax is the global maximizer of the objective function. A larger M

should be chosen otherwise.

The relationship among F1, F2 and F3 can be further conceptualized as follows. When M is

not contained in the last group (as shown in F1), the search algorithm actually merges the group

containing M with all its right-side groups (including the right-censored group) to form a new and

bigger right-censored group. The first three grouping schemes from part B to part C in Figure

1 illustrate this merging process. Subsequently, the new grouping scheme with a bigger right-

censored group (e.g., the first scheme in part C) has fewer total number of groups and is thus

coarser than its original form in F1 (e.g., the first scheme in part B). To make a fair comparison

between Fisher information of grouping schemes with M contained in the last group and with M
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not contained in the last group, after the merging we must compensate for the loss in the latter’s

Fisher information due to this reduction in the total number of groups. To compensate for the

loss of the Fisher information after merging, each integer greater than M in the new last group is

subsequently contained and only contained in a separate group. This procedure thus forms a new

(much) finer grouping scheme (i.e., from grouping schemes in part C to corresponding grouping

schemes in part D). Step 3 then compares values of the objective functions between the optimal

grouping scheme with M contained in the last group and the (much finer) optimal grouping scheme

with M contained in other groups. Pseudo-code describing the search algorithm is listed as below

to facilitate readers’ understanding:

1. Input the (maximum) number of groups N , a sufficiently large integer M and the objective

function of a grouping scheme Ω;

2. Among all N -group grouping schemes where M is contained in their last groups, find the

scheme Gmax that maximizes Ω and denote this maximum value as Ω(Gmax);

3. Set F2 as the overall set of (N − 1)-group schemes where M is contained in the last group

for every grouping scheme G in F2;

4. For every G in F2, there exists one corresponding grouping scheme G ′ where every integer

greater than M is contained and only contained in one separate group. The total set of all

such grouping schemes G ′ is defined as F3. Find the grouping scheme in F3 that maximizes

Ω and denote this maximum value as Ω∗;

5. Return Gmax if Ω∗ ≤ Ω(Gmax); else choose a larger M and proceed to the first step.

To summarize, because there are infinitely many grouping schemes with M not contained in
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the last group (e.g., grouping schemes from the set F1 as shown in part B), we first transform them

into finite schemes with M contained in a new (big) last group (F2 as shown in part C) and then

much finer schemes (F3 as shown in part D) to do a fair comparison. It is clear that these much finer

grouping schemes may sometimes overcompensate for loss in Fisher information in the merging

process. For example, Step 3 could falsely reject the true optimal grouping scheme if the M chosen

is at or slightly higher than the lowest integer included in the last right-censored group of the global

optimal scheme. Yet, the false rejection can be easily solved by increasing the value of M , as each

separate group containing one integer larger than M plays less role in estimating the objective

function. The global optimal grouping scheme successfully accepted by the algorithm remains the

same as that falsely rejected. Actually, the search algorithm is intentionally developed in a way that

it prevents any false acceptance of a wrong optimal scheme at the cost of tolerating false rejection

of the true optimal grouping scheme, while a larger M further solves the false-rejection issue.

6 Data Simulation and Empirical Analysis

To illustrate the optimal designs for count data, we employ data from a nationally representative

survey of youth in America, the Monitoring the Future (MTF) study. Since 1975, each year about

250,000 high-school students from approximately 130 U.S. high schools nationwide participate in

this survey. In the current study, we focus on four questions from the MTF study related to 12th

graders’ frequencies of alcohol drinking from 1996 to 2012. The first three questions on alcohol

drinking are virtually the same except for the reference period (in your lifetime, during the last 12

months and during the last 30 days): “On how many occasions have you had alcoholic beverages

to drink–more than just a few sips?”. The GRC response categories for the three questions are: 0
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Occasions, 1-2 Occasions, 3-5 Occasions 6-9 Occasions, 10-19 Occasions, 20-39 Occasions and

40 or More. The fourth question is related to binge drinking: “Think back over the LAST TWO

WEEKS. How many times have you had five or more drinks in a row? (A ‘drink’ is a glass of

wine, a bottle of beer, a wine cooler, a shot glass of liquor, a mixed drink, etc.)”. GRC response

categories for this question are none, once, twice, 3 to 5 times, 6 to 9 times, 10 or more times.

Table 1 shows the original counts of drinking data from 1996 to 2012. Drinking behaviors tend to

be less often with shorter reference periods. Binge drinking is most rare among the 12th graders.

To identify appropriate prior distributions for Bayesian optimal designs, we wrote an R func-

tion grcmle to infer Poisson parameters based on the likelihood functions given in (4) and (6).

This R function adopts maximum likelihood estimation and reports the mean, standard error and

confidence interval estimated from data. As multiple waves of data are available from the MTF

study, we use the mean ± 3 standard deviations as the range of the prior distribution. In the absence

of multiple datasets, researchers could also determine the range of prior distributions based on the

mean and standard error (e.g., the mean ± 3 standard errors) reported by this R function. Table 2

summarizes means and standard deviations of Poisson and zero-inflated Poisson parameters across

the 17 years investigated. As expected, the means of λ across different survey years tend to be

larger with a longer reference period. Also noteworthy is that all standard deviations calculated

are much smaller than their corresponding means, suggesting that the year-to-year (zero-inflated)

Poisson estimates are relatively stable.

Next, based on the aforementioned search algorithm, we developed another R function find.scheme

in the R package GRCdata to search for the optimal GRC grouping scheme, which has the fol-

lowing parameters:
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Table 1 Frequency distributions of adolescent alcoholic drinking, MTF, 1996-2012 

 Lifetime drinking  Drinking in last 12 months 

Year 0 1-2 3-5 6-9 10-19 20-39 40+  0 1-2 3-5 6-9 10-19 20-39 40+ 

2012 674 199 235 208 281 224 416  795 335 322 225 231 160 163 

2011 675 191 271 211 294 211 422  825 384 297 237 237 136 151 

2010 671 193 265 216 281 244 460  784 397 321 231 250 137 199 

2009 582 191 239 223 270 245 446  701 385 292 222 262 158 171 

2008 634 160 251 210 292 222 470  759 380 288 218 241 165 187 

2007 676 195 227 204 306 229 531  808 354 277 243 271 157 239 

2006 626 169 233 226 304 242 497  756 349 302 249 262 178 196 

2005 610 197 272 243 244 246 544  745 390 308 237 265 197 212 

2004 571 187 245 210 307 254 583  690 363 314 246 295 214 218 

2003 535 187 232 260 295 257 595  687 373 322 282 256 171 261 

2002 465 151 228 214 267 211 564  592 318 311 214 239 171 240 

2001 447 145 188 185 298 287 514  574 298 269 263 272 179 217 

2000 412 157 246 196 283 248 538  533 303 318 236 277 190 209 

1999 420 178 215 192 311 261 632  558 364 265 247 256 238 274 

1998 442 168 295 233 295 307 724  588 396 327 256 331 213 350 

1997 492 171 247 233 340 310 694  638 367 338 261 325 262 285 

1996 515 155 226 206 282 314 625  642 350 298 254 297 219 250 

 Drinking in last 30 days  Binge drinking in last two weeks 

Year 0 1-2 3-5 6-9 10-19 20-39 40+  0 1 2 3-5 6-9 10+  

2012 1264 462 254 123 76 28 24  1665 197 150 142 29 19  

2011 1346 432 234 122 74 22 34  1730 190 134 124 32 28  

2010 1323 457 254 132 86 25 38  1716 220 158 129 35 27  

2009 1224 438 257 138 85 24 24  1586 222 145 147 34 32  

2008 1262 454 240 137 78 26 41  1630 215 160 135 44 24  

2007 1293 451 275 144 107 37 45  1688 217 164 149 55 39  

2006 1244 469 262 154 100 35 27  1661 211 160 145 45 32  

2005 1257 459 304 157 104 33 32  1674 243 178 165 37 33  

2004 1201 466 296 193 103 31 40  1635 253 171 170 61 26  

2003 1193 504 247 196 123 41 37  1636 234 180 202 42 22  

2002 1062 446 223 151 136 30 39  1456 200 161 166 47 25  

2001 1036 430 239 173 114 40 27  1438 209 158 144 62 37  

2000 1022 437 288 169 94 31 30  1425 202 186 150 40 36  

1999 1041 425 285 214 147 40 53  1460 213 176 217 63 54  

1998 1162 453 347 220 155 58 63  1634 228 224 228 61 57  

1997 1153 527 324 207 170 46 47  1664 253 198 238 62 53  

1996 1134 436 321 193 142 34 53  1572 236 191 202 55 47  
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find.scheme(N, densityFUN, lambda.lwr, lambda.upr, p.lwr, p.upr,

probs, lambdas, ps, is.0.isolated = TRUE, model = c("Poisson",

"ZIP"), matSc = c("A", "D", "E"), M = "auto").

N defines the (maximum) number of groups, which should be greater than 1 for the Poisson case

and greater than 2 for the ZIP case. densityFUN gives the probability density function of a prior

distribution, if needed. [lambda.lwr, lambda.upr] and [p.lwr, p.upr] define the range of λ and p,

respectively, and [p.lwr, p.upr] is not needed if a Poisson model is chosen. probs, lambdas, and

ps define discrete prior distributions. is.0.isolated indicates whether zero should be contained in

a separate group. This parameter is included given that researchers are often interested in estimat-

ing prevalence or incidence rates, which requires zero to be contained in a separated group. model

specifies Poisson or zero-inflated Poisson cases to be used in the search algorithm. matSc gives

the type of local objective functions of the Fisher Information matrix for the ZIP case. Users can

choose from A-, D- and E-optimality. M is a sufficiently large integer required to implement the

search, as discussed above. If the lowest Ms needed to find the global optimal grouping schemes

are specified, most examples listed in Table 3.1 to 3.3 take several seconds to converge. Depend-

ing on the computer configuration, the program may take several minutes to converge if a large

M (e.g., 33) is chosen. If M is set as auto, the search algorithm will automatically determine

an adequate M needed to produce the global optimal grouping scheme and subsequently return

such optimal grouping scheme. As expected, it can take longer time for the program to converge

when the auto option is chosen. If M is not set as auto, the output of find.scheme includes

an indicator succeed indicating whether M chosen is sufficiently large for the search algorithm to

identify the global optimal grouping scheme. Users need to choose a slightly larger value for M if
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succeed is false.

Based on results calculated by find.scheme, Table 3 shows optimal grouping schemes given

combinations of the (maximum) number of groups N and prior distributions. The last entry under

the Lifetime drinking (ZIP) scenario is estimated by the following command:

find.scheme(M=35, N=9, density=function(...)1, lambda.lwr=17.08,

lambda.upr=25.17, p.lwr=0.63, p.upr=0.88, model="ZIP")

which yields the same optimal grouping scheme as

find.scheme(M=35, N=9, density=function(x)1, lambda.lwr=17.08,

lambda.upr=25.17)

We use a uniform distribution as the prior distribution in Table 3.1. It should be noted, however,

that other continuous or discrete distributions can also be processed by the R function as the prior

distribution. The third cell [0, 1, 2, 3-4, 5+] under the Drinking in 30 days (Poisson) scenario

means that the optimal grouping scheme is zero, once, twice, three and four times, and five times

and more given that the total number of groups is five and the range for λ’s prior distribution

is [1.34, 4.02]. Across different scenarios, the lowest M required to identify the global optimal

scheme is also provided. As the search algorithm tolerates false rejection, the lowest M is often

slightly larger than the lowest integer of the last right-censored group of the optimal scheme and

this difference becomes larger as λ increases. Across the eight scenarios in Table 3.1, the cut-

off integers between two adjacent groups tend to concentrate on smaller integers if the parameter

space of λ is close to zero (the binge drinking scenario). If the parameter space of λ stays close

to zero (e.g., rare events), any grouping decision of small integers is not supported by the search

algorithm as the maximum number of groups N increases (see N = 7 or 8 in the binge drinking
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scenario). This finding suggests that the GRC response is inappropriate for collecting very rare

count events. The cut-off integers tend to appear first around the mean of the parameter space of λ,

and then appear at other locations as N increases. The prior distributions in Table 3.2 are truncated

(mean ± 3 standard deviations) Gaussian distributions, whose means and standard deviations are

provided in Table 2. Table 3.2 also demonstrates that the cut-off integers of grouping decisions

often exist at integers around which λ has higher probability density. For the same combination

of N and range of prior distributions, the optimal schemes listed in Table 3.1 and Table 3.2 are

virtually the same, suggesting that the search for optimal schemes is not sensitive to the choice of

prior distributions. Table 3.3 lists optimal grouping schemes when λ is low, moderate, high and

unspecified for readers’ reference. Because zero is contained in a separate group for the ZIP case

from Table 3.1 to 3.3, the optimal grouping scheme remains the same when λ is fixed but p varies.

To illustrate how an optimal grouping scheme is preferred to other grouping schemes, we use

the grouping scheme adopted by the MTF binge drinking question as a reference grouping scheme,

and compare standard errors estimated under different grouping schemes. In Table 4, the first col-

umn is the true parameters we used to simulate the Poisson distributions. Both parameters inferred

from the data (see Table 2) and hypothetical parameters are used. The reference schemes are those

adopted by the MTF study to measure alcohol drinking. The optimal schemes are generated by

find.scheme with the same number of groups as the reference group. For each scenario, the

simulation is repeated 1,000 times to calculate estimates.

When λ is small, the reference schemes appear to be acceptable as their corresponding standard

errors are only slightly larger than these calculated based on optimal grouping schemes. However,

the differences between standard errors estimated from the reference schemes and those of the

optimal schemes grow larger as λ increases. As expected, the standard errors decrease by
√
10
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when sample sizes increase by 10. Moreover, the strength of this algorithm can be illustrated

by optimal schemes with fewer groups than corresponding reference schemes. Compared with

estimation based on the reference schemes, researchers could achieve almost the same, sometimes

better, efficiency of estimation by adopting optimal schemes with even smaller numbers of groups

N . In other words, an optimal grouping scheme can outperform a nonoptimal one even if the latter

has more groups.

7 Discussion and Conclusion

This research applies optimal experimental design, a branch of semi-supervised machine learning,

to social science research and provides a novel algorithm to find the optimal grouping scheme

of GRC count responses. One of the most striking features of social science research on survey

methodology is the degree to which the design of response categories in survey questions has been

neglected. Count responses with grouping and right censoring has long been collected by social

scientists to study a variety of behaviors, status and attitudes. Yet, there has been little research on

optimal designs for discrete response categories such that grouping or right-censoring decisions of-

ten rely on arbitrary choices of survey investigators. To search for optimal grouping schemes, this

paper first uses Poisson-multinomial mixture models to conceptualize the data generating process

of count data with grouping and right censoring, and then investigates the relationship between

grouping-scheme choices and asymptotic distributions of the Poisson-multinomial models. Using

different types of optimality in experimental designs (De Leon and Atkinson 1991), we investigate

local objective functions of the Fisher information (matrix) and further demonstrate the possibility

of optimal designs for GRC count responses: the optimal grouping scheme should maximize the
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global objective function of the Fisher information (matrix). We also propose a new three-step

general algorithm to process infinitely many grouping schemes and identify the global optimal

grouping scheme. To process all possible grouping schemes, this algorithm introduces a suffi-

ciently large integer M , which is in theory the lowest integer contained in the right-censored group

of the global optimal scheme. The introduction of M not only makes the search feasible but also

tolerates false rejection of the global optimal grouping scheme. A new R package GRCdata is

developed to implement this algorithm and help survey investigators to assess grouping schemes

of count responses. The use of two R programs grcmle and find.scheme in GRCdata is

illustrated by empirical examples of alcohol drinking. Results from data simulation show that

the optimal designs yielded by this new algorithm considerably outperform existing designs: the

optimal grouping scheme, even with fewer total number of groups, can lead to more efficient esti-

mation.

The M algorithm and software programs presented in this research readily provides survey

investigators a new tool for evaluating grouping and right-censoring decisions of count responses

in surveys. While survey methodologists do need to take a series of factors (e.g., the coherence

of response categories over time and across questions, or whether a specific count is of research

interest or has substantive meaning) into account when designing response categories (Schaeffer

and Dykema 2011), the new R package developed allow scholars to incorporate their prior knowl-

edge in optimal designs of survey questions. Although this research only addresses (zero-inflated)

Poisson models of count data, it should be noted that the application of the M search algorithm

is not restricted to the two statistical models investigated and can be extended to other models of

count data, such as negative binomial models and hurdle models. If the assumption that the Fisher

information increases with a finer grouping scheme holds for other discrete or continuous data gen-
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erating processes, this M algorithm can be employed for designing survey responses in general.

Such potential applications of this algorithm to broader issues in survey methodology merit further

attention.
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